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X-ray dynamical diffraction from partly relaxed epitaxial structures
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An approach to calculation of reciprocal space maps of x-ray diffraction from partly relaxed multilayered
epitaxial structures is reported. The theory takes into account the additional harmonics of wave field caused by
the difference in the lateral projections of reciprocal vectors in the sample layers. The reciprocal space maps
shown can be simulated on the basis of the dynamical diffraction theory and matrix method for boundary
conditions, which are applicable to arbitrary experimental geometry. The developed theory explains the ex-
perimental results from several typical epitaxial structures in partly relaxed state.
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I. INTRODUCTION

Crystalline epitaxial multilayers and superlattices play an
essential role in modern nanoscale and semiconductor
technologies.! High-resolution x-ray diffraction (HRXRD) is
an indispensable tool for investigation of the properties and
quality control of these objects, such as layer thicknesses,
relaxation degree, phase composition of the solid solutions,
lattice deformations, etc.? For the precise analysis of the
HRXRD data, the two-wave approximation of the dynamical
diffraction theory (DDT) is used to calculate the wave fields
within the layers of the sample.® The wave amplitudes are
determined using either recurrent matrix equations* or ap-
proximate Takagi-Taupin equations.>® In both cases, the
boundary conditions are used consequently upon the conti-
nuity of wave fields at the interfaces of multilayers.?

The use of the conventional boundary conditions in DDT
for the wave fields in the multilayered structures with differ-
ent crystallographic lattice parameters is not justified in the
case when the sample is no longer pseudomorphic, i.e.,
partly or fully relaxed. For example, let us consider the
boundary (interface) between two crystalline layers in the
diffraction plane, which is defined by the wave vector k of
the incident wave and surface-normal vector 1\7, which is par-
allel to the axis z. The axis x lies in the plane z=0. In the
coplanar case, which is considered in this paper, the wave
vectors kg and k; of the diffracted waves in the substrate (S)
and layer (L) are also located in the diffraction plane. They
correspond to the reflections from the crystallographic planes
defined by the reciprocal space vectors };S and I;L (Fig. 1). In
more general cases, the lattice constants a; ,c; ;ag,cg are dif-
ferent for various layers and substrate (here we consider for
the sake of simplicity the tetragonal unit cell). To character-
ize this difference, the dimensionless lateral & and normal &,
mismatches are usually introduced,
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Here the index R is related to the relaxed layer, which pos-
sesses the same lattice constants as a bulk crystal. The real
values of the parameters a; ,c; within the multilayered struc-
tures depend however on the growth conditions and material
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properties, and are not equal to af,ci. The crystallographic
cell deformation of the layers is conditioned by the elastic
properties of the material and interaction with the substrate,
and is described by the degree of relaxation R and mis-
matches,

ap—dg ap—dg CL—Cs
R=— s &= ;o = (2)
ar —ag as Cs

The relaxation degree varies from R=1 (relaxed layer, §
=§f) to R=0, ie., a;=ag &=0, which corresponds to
pseudomorphic structure. The deformation of the unit cell is
assumed to occur without cell volume changes, and thus the
values § and &, are interdependent through the Poisson ratio
v. In the case of the tetragonal unit cell, this dependence is
expressed as'

R R
cL—cp 2v ap-ap

R R (3)

cr I-v aj

The epitaxial films expose the complex microscopic struc-
ture owing to dislocations at their interfaces formed during
the growth process.” Within the kinematical theory of x-ray
diffraction, the diffraction spectra from the structures pos-
sessing the dislocations have been calculated in Ref. 7 and
recently extended in Refs. 8 and 9. The kinematical theory,
however, has a limited applicability in the case of thick lay-
ers, involved in the diffraction process. At the same time, a
simple approach based on the DDT and a single phenomeno-
logical parameter R is proved to be effective, too.!%!! This
approach however is only valid for the x-ray diffraction from
the pseudomorphic multilayered structures because of the
equality of the reciprocal vector projections onto interfacial
planes, A’=hg,=h;=--- (Fig. 1). This fact makes it possible
to separate the variables in the Maxwell equations and to
reduce the problem to the sequence of one-dimensional dif-
ferential equations (for example, Refs. 4-6).

The diffracted wave-vector components parallel to the
surface are equal for all layers and are localized in a narrow
angular interval Ak./k.~1/koLy~10"" close to the value
k=k.+ hg. Thus, the longitudinal component of the diffrac-
tion transfer vector G=k'—k is localized in the vicinity of a
single value for varying k (Fig. 1),
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FIG. 1.
structures.

X-ray diffraction from relaxed and pseudomorphic

ge=k,—k,=h. (4)

In the case of the diffraction from the partly relaxed layer
(0<R<1), the values a; #ag; §#0, i.e., hg,# hy,. Thus,
the lateral components of the wave vectors are not equal
k.¢#k;, and the waves reflected from the substrate and the
layer propagate in different directions. Therefore, the addi-
tional harmonics exp[il(hg,—h;)x], [=0,*1,*=2,... (Fig.
2) have to be taken into account to provide a continuity of
the wave fields at the interfaces. A determination procedure
for the amplitudes of the harmonics has been proposed in
Ref. 12 on the basis of DDT for infinite system of coupled
algebraic equations and for the case of grazing-incidence ge-
ometry. The solution, however, is found in the approximation
&, =0, which is not satisfied for most structures owing to Eq.
(3). An alternative approach has been considered in Ref. 13
based on the Takagi-Taupin equations, which fail in the case
of grazing-incidence and extremely asymmetric diffraction.

In the present work, a method based on the DDT is de-
veloped for high-resolution x-ray diffraction from partly re-
laxed multilayered structures. The approximate analytical so-
Iution for the wave fields which is satisfactory for the
evaluation of HRXRD data is found for the entire range of
the values of the lateral mismatch. This method allows the
realization of an effective numerical algorithm for simulation
of HRXRD reciprocal space maps (RSM) from the fully or
partly relaxed epitaxial samples. The algorithm is also valid
for the cases of grazing-incidence (exit) and extremely asym-
metric diffraction (not considered in this work). In Sec. II,
the algorithm for calculation of the amplitudes of the wave
harmonics is developed for arbitrary variation in the lateral
mismatches and the recurrent matrix formalism is extended
to the case of the lateral lattice mismatches. In Sec. III, sev-
eral numerical examples demonstrating the validity of the
proposed technique are presented, and the method is applied
to evaluation of the experimental data from typical semicon-
ductor structures.

II. X-RAY DIFFRACTION FROM THE MULTILAYERED
PARTLY RELAXED SAMPLE

Let us consider Bragg diffraction from the layer on the
substrate with the lattice constants a;,c; and ag,cg, respec-
tively (Fig. 1). The propagation of x rays through the media
can be considered in DDT (Ref. 3) separately for orthogonal
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FIG. 2. The emergence of the additional harmonics in Xx-ray
diffraction from the layer/substrate sample.

o and 7 polarizations. For each polarization, the incident
wave in vacuum is described by the function 7e™*0” with the
scalar amplitude 7, and the wave vector k,. The observed
diffracted wave with the wave vector k' is determined by the
amplitude U. We assume here that lgo is close to the Bragg
condition for both layer (reciprocal-lattice vector /;) and
substrate (vector ES),

2(kohy) + h? = 2(kohs) + h% = k3| x5|. (5)

Within the framework of the two-wave DDT, the incident
wave excites inside the 1ayer and substrate the transmitted
waves with amplitudes 71 5 and T(l% respectively, and the

0)

diffracted waves with amphtudes pi, and Z(IO% The wave
field in crystalline layer is then expressed as’
D(LO)(7)= E (7.(0) + P;O) ihP) gikiF (6)

i=1,2

where the wave vectors IZ, i=1,2 and relations between am-
plitudes 7.* and p* are determined from the Maxwell equa-
tions taking into account the only three Fourier components
of x-ray polarizability x5, x% ;- In the further equations, the
case of the coplanar geometry is considered for the sake of
simplicity, when the vectors 120,1\7 ,l’f are located in the same
plane. In this case, the vectors /SO,Ei,ES,L have two compo-
nents only and the projections of the wave vectors onto the
sample surface are preserved (neglecting edge effects),

kox = ki = k, = ko cos w;, (7)

where ; is an incidence angle (Fig. 1). In the media, only
the normal components of the wave vectors k;, are changed,
which can be expressed through the dimensionless param-
eters u; (Ref. 4) as

ki, = kou;, (®)

to be determined from the dispersion equation

= X + g - (= Xl = O )

with polarization factor C=1 for o polarization and C
=cos(26;) for 7 polarization. For the compactness reason,
the case of o polarization is considered below. Additionally,
the following parameters are introduced:'*

Yo = Sin w;; =,
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k hL2
(=1 =S T -,
0
L
¢=Z—;=+ asin® 65— (7. (10)

where 0§ is the Bragg angle for the layer. The essential dif-
ference of the Eq. (9) from the dispersion equation for
pseudomorphic structure* is the dependence of the parameter
yﬁ on the layer physical properties. The amplitudes of the
transmitted and diffracted waves are connected as

Xi
@+ 92 = (%) - x5

The dispersion Eq. (9) of the fourth order delivers four
possible solutions for the wave vector in crystal but in two-
wave approximation the only two solutions are meaningful,
for which k;, = k. The two other roots with k;, =~ —k,, corre-
spond to the specularly reflected waves w1th amplitudes,
which are approximately |xo| ~ 107> times smaller than prin-
cipal waves, if the grazing-incidence or grazing-exit diffrac-
tion cases* are excluded.

In the similar way, the wave fields inside the substrate are
calculated. For example, the wave with amplitude Tl 2, trans-
mitted through the crystalline layer, excites inside the sub-
strate the wave field consisting of the transmitted 7(® and
diffracted Z(© waves,:

0.0, (0 _

Pz(O):Ui T U (11)

Dgo)(F) — (T'(O) + Z(O)eihs(F_§)+i¢n)ei]?if’ (12)

where ¢,1=Er§.4 As regards two-wave DDT, these waves are
expressed similarly to Egs. (9) and (11),

s
Xn

WO+ = () - x5

(1 = B 3 + 27— (A - xi1=xpx’y (14)

For the waves in the substrate, the additional boundary
condition is applied, which implies the absence of the energy
flux toward the substrate top border (there is no wave source
with such a wave-vector direction). Therefore, one of the
four solutions of Eq. (14) has to be chosen, for which
Ru®>0; Ju® >0.* The amplitudes of the harmonics of the
wave fields excited in the considered layer-substrate sample
are displayed as an iterative sequence in Fig. 2. The dif-
fracted wave Z(*) exiting the substrate excites in the layer the
wave p'!) with wave vector equal to ]gs_'_ﬁszlgo_i_ﬁs_ This
wave vector satisfies the Bragg condition for crystallographic
planes with reciprocal space vector (—h%), which leads to the
diffraction of the wave p!" and yield of the amplitude 7!
corresponding to the wave vector k0 z120+};S —hE. All these
waves satisfy the DDT equations analogous to Egs. (6)—(9),
with substitution of k, by k,+(h*~h%). In turn, the wave 7
causes in substrate the wave fields T“) 7 with the wave
vectors equal ko+hS—hY and ky+2h5—h, respectively. The

70 =070, 0 (13)
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wave Z( creates in the layer the waves 72, p, with the
wave vectors k2 = ky+2(hS—hY), k? + kL, and so on (Fig. 2).

Thus, a set of wave harmonics is created where the DDT
equations for amplitudes and wave vector of the mth har-
monic are obtained from Egs. (6)—(9), (13), and (14) by sub-
stitution of k, by k,+m(h’—h"). In the general case, the dif-
fracted wave p© may produce the wave fields
T\=m) zl=m) l=m) (‘m),m>0, i.e., negative harmonics. They
contribute essentlally, however, only in the case of the graz-
ing scattering geometry, when the specularly reflected waved
have to be taken into account. An equation system for the
amplitudes of the scattered x-ray wave fields similar to the
one described here has been obtained in Ref. 12 on the basis
of the continuity of full wave field at the sample interfaces.

The recurrent relations between the amplitudes of the
neighbor harmonics can be found using the boundary condi-
tions with the preserving component of the wave vector par-
allel to the surface (Fig. 2),

T(]") + 7(2") =0,
D70 400800 _ )

(n) zul 1u2 ) _ T(n) iu ">r

U(n)T(n)eiu(”)t _ U(1n+1)7_(1n+1)eiug”+l)t n

. n+1)
v(2n+1)7_(2n+1 iy ,

(15)

where dimensionless value r=kqL, L is the layer thickness,
H™ is the amplitude of the wave in vacuum, which is excited
by the diffracted wave of nth harmonics. In Eq. (15) the
expression Xh(r) X~e’h5("’5 +hi75 (Ref. 4) has been taken
into account. Using Eq. (15) and the equations for (n+1)
harmonics, the expression for kW= gD HO §s found,

(r+1) _ p (n+1) ot _ it

) _ Y1 —¢
KW' =0 (ln)

vzn+l) tu(’Hl)

i)
_U(Z”) v(ln+l)ezuln+ t

(16)

Taking into account the boundary condltlons for zeroth

harmonics p(0> i + p(0 e”‘z it =0, 7'(0) —l (the amplitude
T, of the wave in vacuum equals 1) the system of Eq. (15) is
closed and leads to

(0) . (0)
U(IO)U(QO)(eml 1 pit t)

HO = ,
U(10)eiu(10>t _ U(ZO)eiu(ZO)t
i, 04,
HD =, vi" v} ()" = v)eit
U(ll)eiu(l1 r_ U(l)em(l) U(IO)eiu(]O)t _ U(20)€iu(20)t
A" = HOTT . (17)

The expressions (16) and (17) define comprehensively the
amplitudes of all harmonics. Below, the limiting cases are
considered: § =1 and §— 0. In the former case, the diffrac-
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FIG. 3. Simulation of the x-ray diffraction intensity for the sample structure as described in the Table II (a) completely pseudomorphic
multilayer R=0 and (b) with partly relaxed layers as designated in the Table II. The curves (i) and (ii) are the ¢, scans at different g,: ¢,
=h£=36.4 nm~! and qxzhf=36.6 nm~!, respectively. The curves (iii) and (iv) demonstrate the contributions of the second and the third

harmonics in the diffracted intensity.

tion on the layer and substrate can be considered indepen-
dently, then H® and H" are the amplitudes of the wave
diffracted on the layer and the substrate, respectively. Other
harmonics may be neglected because of x> X}S;)(E (in DDT,

only the values =|yx;| are accounted for). In the latter case,
all the harmonics leave the layer in the same direction, the
values <" are equal, and the amplitude of the diffracted
wave U in vacuum is

U=HO+HY(1 + k+ 1>+

UIU2(eiult _ eiuzt) + U(vleiuzt _ U2eiulz‘)

vleiult _ vzeiuzt _ v(eiult _ eiuzt)

(18)

For a fully pseudomorphic structure (lateral mismatch equals
zero), the conventional boundary conditions are applied
without additional harmonics,

n+n=1, vn+v,n=U,

_ iut
=vTe™,

(19)

that gives the U presented in Eq. (18). Thus, the method
developed above describes correctly both limiting cases of
complete (R=1) and zeroth (R=0) relaxation of the layer on
the substrate (Fig. 2).

To estimate the importance of the harmonics H? H®
in calculations, their contribution to the simulated HRXRD
intensities has to be considered. At the scanning angles out-
side the Bragg-peak area where the deviation parameter «
| x;l, the values v(”l),v(l'”),v(z”’) are equal,

iyt

e+ ne =Te",  vime"™ +vyme

X; X (m)
h h
oo e e (20)
S ay X
and
) XS‘ XS’ Xé
H®? o H(I)U_ o _h_h_h (21)

RN

1
Uy (¢ 24 2)

For the additional harmonics, the deviation from the
Bragg condition depends not only on the lateral mismatch §,
tending to zero at R=0 but also on normal mismatch &,
which is always larger than & owing to Eq. (3). For the
typical semiconductor solid solutions, &, varies within the
limits &, =107>~1072, which are 10°—10° times larger than
x-ray susceptibility.

Assuming =0, the amplitude of the second harmonics in
the vicinity of the layer peak is H(Z)OC(XE/ &2, as follows
from Eq. (21). Thus H?® is approximately three orders
smaller than HD. The harmonics of the higher order H® Ve
are even smaller and rapidly decrease in the region far from
the Bragg diffraction peaks. These estimates are confirmed
by the numerical calculations for the contribution of the har-
monics shown in Fig. 3(b) (lower curves). The simulations
have been carried out for the reflection (135) at Cu K« wave-
length from the multilayered sample with the parameters de-
scribed in the Table II, low intensity peaks from the thin Si
layers are not taken into account. The Fig. 3(a) shows the
diffraction from the same sample assuming the pseudomor-
phic nonrelaxed structure. The upper curves in the Fig. 3(b)
demonstrate the diffracted intensity of the principal dif-
fracted waves for layers and substrate. It should be noticed
that both layers are partly relaxed and almost pseudomorphic
relative to each other (the interference fringes appear).
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In the case of the partly relaxed layers [Fig. 3(b)], the
intensities of the diffracted beams, determined by the ampli-
tudes H” (layer) and H'" (substrate), correspond to different
values of ¢g,, and there is no interference between these scat-
tering channels (the layer intensity displays the thickness os-
cillations). For the pseudomorphic case [Fig. 3(a)], the dif-
fraction from the layers and substrate occurs at the same
value of ¢,, which causes a more complicated interference
picture. As a result, the cross influence of the layer and sub-
strate scattering exists in high-order harmonics at any relax-
ation degree but the amplitude of the harmonics is negligible
and does not contribute to the HRXRD scans, in fact.

The analysis above confirms the main contribution to the
detected HRXRD intensity by zeroth-order harmonics in
each layer, which are for the considered sample: TO,H(O) JHY
in vacuum; 79, p@ AV pM in layer; and 7(?,Z© in sub-
strate (Fig. 2). This fact allows to use a simplified algorithm
instead of Eq. (15) for calculation of the amplitudes. The
modified algorithm remains uniformly suitable for fully re-
laxed, partly relaxed, and pseudomorphic layers, which is an
advantage in the case of multilayered structures.

Comparing the solutions of the simplified Eq. (19) with
those found from Eq. (15), the following relations can be
derived with the accuracy O(~|x,|?) (pseudomorphic case):

. (0 - (0 - (0
T(lo)em(l )t= Tem( )t; l)( 7.(1 emz t= vTe”‘( )t’

(1)

HO=vU-vTe ™, HV =07, (22)

In the case of the partly relaxed layer, the amplitudes H®
and H" determine the waves, which propagate in a vacuum
in different directions and with the lateral projections of the
wave vectors kg, +h;, and kg, +hg,, respectively. If the equal-
ity hg,=h;, holds, the total amplitude of these waves is equal
to amplitude U of the reflected wave for pseudomorphic
structure. There is an evident physical interpretation of the
formulas obtained above: the amplitude of the principal har-
monics in the layer is obtained by the subtraction of the
principal amplitude in the preceding layer from the ampli-
tude in the layer in the pseudomorphic state, taking into ac-
count the wave phase owing to the refraction. The Eq. (22)
expresses the wave amplitudes in partly relaxed layer
through the solutions in an equivalent pseudomorphic layer.
This fact simplifies the solution of the boundary problem
(15), that is essentially for multilayered structures.

For investigation of the multilayered pseudomorphic
structures, where ¢, is equal for all layers, the scanning of
the intensity 1(g,) over a single axis, e.g., ¢, is satisfactory.!
In the case of multilayered partly relaxed structures, how-
ever, the diffraction peaks from the layers possessing differ-
ent mismatches are located at different positions of the scat-
tering transfer vector components ¢,,q,. For such samples,
the reciprocal space mapping over the coordinates (g,,q,) or
(H,L) is used. The theoretical interpretation of these data
usually utilizes either kinematical diffraction theory’ or ap-
proximate solutions of the Takagi-Taupin equations.'® How-
ever, as mentioned above, the kinematical theory is not ap-
plicable for the diffraction in thick layers and the Takagi-
Taupin equations fail for the diffraction in grazing-incidence
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or grazing-exit geometry. In opposite, the matrix method of
x-ray diffraction is applicable for arbitrary experimental ge-
ometry and number (thickness) of the layers in the sample*!>
but it demands the continuity condition for the lateral com-
ponent of the wave vector at interfaces, which is satisfied for
the pseudomorphic layers only. As demonstrated above, the
additional harmonics of the diffraction field caused by differ-
ent mismatches in layers contribute negligibly to the inte-
grated x-ray intensity. Basing on this fact, we develop an
approach, which makes possible to simulate reciprocal space
maps from the partly relaxed structures, keeping all the ad-
vantages of the matrix method for dynamical diffraction
theory.

The algorithm proposed consists of the following steps.
Assume the x-ray diffraction intensity has to be calculated
from the structure composed of N partly relaxed layers on
the substrate. First, the simplified sample model is used with
zeroth lateral mismatches §. For this sample, the matrix
method can be used for calculation of the wave-field ampli-
tudes D; , for 7 and o polarizations for arbitrary number and
thickness of the layers and arbitrary diffraction geometry.*!3
Here the index i=1,2,3,4 determines four roots of the dis-
persion Eq. (9) for nth layer; n=0,1,...,N+1, where n=0
corresponds to vacuum and n=N+1 to substrate. Accord-
ingly to Eq. (13), the amplitude of the diffracted wave in nth
layer Un=2?=]v,»’nD,-,n and the lateral component of the wave
vector k,+h, are equal for all the layers. In the partly relaxed
sample, however, there exist the waves with the wave vectors
k.+h,, in each layer, besides the one with k.+h,,. These
waves propagate in different directions and depend on the
principal harmonics of the diffracted waves coming from the
layers m=(n+1),...,N+1 underneath (in substrate there ex-
ist only the principal wave). The amplitudes of all harmonics
in the layers can be expressed through the solutions D;,, of
the matrix equations for simplified pseudomorphic structure
using the recurrent equations,

(n+1)

UM =0, - U, o U
= YD g+t Nl
. (N+1)

= UWYHemion
N+1
U§V++1 )= UN+1 ’
4
U,=20;,Di,.
i=1
m=n+1
" =ky 2 u (kL. (23)

I=n+1

Here the subscript index in the values U,(;"),n
=0,1,...,N+1 is a number of the layer and the superscript
index m=n+1,...,N+1 points [in opposite to as in the Eq.
(15)] to the amplitude caused by the diffraction process in
the underneath layer with the number m; L,, is the thickness
of mth layer; qo,({") is the phase owing to the refraction of the
diffracted wave from mth layer to n layer. Parameters
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u%)(kxm) are the solutions of the dispersion Eq. (9) for Ith
layer, corresponding to the reflected waves and wave vector
kyn=kox+h,,. Equation (23) is applicable to any ratio of the
mismatches in the layers. In the general case of partly re-
laxed layers, the waves with amplitudes U,(q’") propagate at
different angles, depending on the difference of the lateral
projections of wave vector k,,—k,,=h,,—h,,,. If all the mis-
matches are equal to zero (pseudomorphic case), all the re-
flected waves propagate in the same directions and

N+1
> u¥=u, (24)

I=n

thus the sum amplitude of the reflected waves coincides with
the solution of the matrix equations for the pseudomorphic
structure.*!> The following result should be especially em-
phasized, despite the fact that the recurrent equations in Eq.
(23) express the amplitudes in partly relaxed structure via the
amplitudes in pseudomorphic one, the wave-field distribution
is considerably different in these cases. Namely, in the
former case there are (N+1) reflected waves propagating
with different projections of the wave vectors on the sample
surface whereas in the latter case these projections for all the
diffracted waves are equal.

Now we consider how the reciprocal-space-map intensity
is calculated on the basis of the proposed method. Assume
that a plane x-ray wave with the wave vector k,,k,
=\J’k%—kf, incident on the sample, and the detector records
the reflected radiation in a vacuum (Fig. 2) as a monochro-
matic wave with the wave vector k_,k.. Then the amplitude
distribution is written in k| k. space as

N+1

UkLkl) = 2 U8, ~ ky — hjy ) 8k, + kG — (ko + hjy 0)?).
j=1

(25)

Here the amplitudes Ug) are calculated using formula (23);
the first o function derives from transformation of the lateral
component of the wave vector at each interface. The second
o function limits DDT to coherent elastic scattering without
the change in the x-ray wavelength.

The typical experimental scanning geometries for the
measurement of the reciprocal space maps include (26/ )
(with relative or absolute 26 and  scales) and (H,L) [or
(g.,g.) in other units] scanning modes. All the mentioned
coordinates can be converted into each other, and therefore
we consider here the simulation of the (26/ @) RSMs, where
o is an x-ray incidence angle on the sample surface and 26 is
the angle between incident beam and detector, and ¢,
=ko[cos(20—w)—cos w]; g.=ko[sin(26—w)+sin w]. The in-
cident beam usually has a certain divergence, described by
the function Fg(w— wpg), and the detector has a certain reso-
lution, which is taken into account by the detector resolution
function Fp(20-26)).

In the amplitudes of the wave fields derived above, each
layer has been considered as an ideal crystal within the DDT
concept. The real structure of the partly relaxed samples,
however, is known to include the numerous dislocations.’
The diffuse x-ray scattering from the defects results both in
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the diminished intensity of coherent (diffracted) waves and
the broadening of the diffraction peaks. The microscopical
approach to the analysis of the x-ray diffraction on the basis
of the kinematical theory is developed in Ref. 7 and has
recently been further extended in Refs. 8 and 9. The micro-
scopical description of the diffuse x-ray scattering on the
basis of the DDT matrix approach is a complicated task and
is not considered in this work. The RSMs simulated below,
however, include the incoherent contribution by using addi-
tional phenomenological parameters. The static Debye-
Waller factors e™"/ take into account the reduction in the
amplitude of the coherent wave in each layer caused by the
diffuse x-ray scattering.” The functions F M(cj—ﬁ,-) describe
the broadening of the diffraction peak owing to the diffuse
scattering caused by the crystal defects.!

The observed x-ray intensity of the scattered radiation in
the reciprocal space point corresponding to the coordinates
(26p, wp) is obtained after the integration of the amplitude
over the initial states and the convolution with the detector
resolution function,

N
> Fuldp—h)

j=1

2

XFgl/(20) - wp]U§e™"7?| d(26), (26)

where ;(26) is found from A(;) ,=q,(w,26) and is written as

kK =k +h,;

cos(20 - w;) = cos w; + ¢xj’

. 26 .
w/(260) = — + arcsin —%; ,
2 2 sin(26/2)

q.p =ko[cos(260p — wg) —cos wgl;  q.p=ko[sin(26p — w)

+ sin wg]. (27)

Thus the Eq. (26) being used for simulation of the dif-
fracted x-ray intensity, utilizes the DDT for only the calcu-
lation of the amplitudes Ug), which corresponds to the
pseudomorphic structure. In general case, these amplitudes
differ from the ones delivered by the kinematical theory and
determine the position and dynamical shape of the Bragg
peaks without accounting the diffuse scattering caused by the
defects in the crystal and the instrumental effects. For the
analysis of the experimental data in the next section, the
functions F;, Fp, and Fjp are chosen as Gaussians with pa-
rameters obtained by the fitting of the measured reciprocal
space maps. Because of the coherent processes are precisely
taken into account within the framework of DDT, the fitting
results deliver the averaged characteristics of the microstruc-
tural defects in the partly relaxed samples. This approach is
certainly not entirely microscopic, however, it is effective
enough for practical evaluation of the reciprocal space maps,
as shown in the examples below.
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FIG. 4. q,q. reciprocal space map for (114) Bragg reflection from AlGaN/GaN/A1GaN/AIN[Si] multilayer, described in the Table I: (a)
experiment, (b) simulation with Debye-Waller factors e~"J, (c) simulation without incoherent scattering from dislocations, and (d) DDT
simulation for the model sample with the pseudomorphic layers with the same thicknesses and concentrations.

III. ANALYSIS OF EXPERIMENTAL DATA

Figure 4(a) shows the experimental ¢,q, RSM for (114)
Bragg reflection of Cu K« radiation from the sample com-
posed of several Al,Ga;_,N layers with different aluminum
concentrations x on the silicon Si(111) substrate, the sub-
strate peak is not included in the measured area (sample by
courtesy of Nitronex Corporation). Epitaxial structures such
as this are being used as the starting material for the com-
mercial production of AlGaN/GaN high electron mobility
transistors for various radio frequency applications.!®!7

Figure 4(c) demonstrates the theoretically simulated map
of the same (114) Bragg reflection on the basis of formula

(26), and Fig. 4(b) also includes a static Debye-Waller factor
in simulations, which takes into account the decrease in the
diffracted amplitude owing to the incoherent scattering from
the dislocations.’

The resolution parameters Awg,A(26),,) have been esti-
mated from the experimental setup whereas the layer param-
eters for the aluminum concentration x and relaxation degree
R have been fitted with respect to the minimal difference
between simulated and experimental peak positions. Table I
shows the sample layer structure and the fitted sample pa-
rameters: layers thicknesses ¢, relaxation degree with respect
to the previous layer R, the evaluated concentration x of

TABLE 1. Sample structure and layer parameters.

t

Layer Material (nm) R X eV
AlGaN(1) Aly 0GagsoN 16 0.00 0.20 1
GaN GaN 775 1.00 1
AlGaN(2) Alg3;GaggoN 250 051 0.29 1
AlGaN(3) AlyssGag.N 450 0.70 0.55 0.5
AIN AIN 400 1.00 0.02

Si substrate
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TABLE II. Sample structure and layer parameters.

t

Layer Material (nm) R X
Si Si 23 0.0

SiGe(1) Sip.g9Geo 11 200 0.08 0.10
Si Si 6 0.0

SiGe(2) Sig79Geg 21 180 0.65 0.20

Si substrate

aluminum (the nominal value is displayed in the Material
column), and static Debye-Waller factor.

The relaxation degree with respect to the previous layers
R is essentially different for the layers, which reflects the
variation in the lateral mismatch & # 0 within the multilayer.
The working layer AlGaN(1) remains, however, strained be-
cause of the small layer thickness.

The AIN peak intensity experimentally observed in Fig.
4(a) is evidently smaller than that simulated on the basis of
formula (26) in Fig. 4(c). This discrepancy can be explained
by the mechanism of the relaxation in epitaxial structures
with large lattice mismatches. According to Ref. 9, the lateral
lattice periods of two crystalline layers are equal at their
interface. This, however, is compensated by the appearance
of the dislocation network close to the interface, which re-
forms the average lateral lattice parameter to the one, corre-
sponding to the relaxed bulk state. In the vicinity of the
dislocation nuclei the crystalline order is essentially broken
but it is re-established toward the layer depth. In the case of
the investigated sample, the Si(111) substrate and AIN layer
in bulk state have the lateral lattice parameters \2ag;
=0.768 nm and a,y=0.498 nm. The dislocation networks
appear to compensate for this large difference, distorting the
crystalline order and resulting in the loss of the scattered
coherent intensity. To take into account this effect in Eq.
(26), additional static Debye-Waller factors e™"i have to be
introduced for diminution of the amplitude of the coherent
diffraction owing to the incoherent scattering from the
dislocations.” Figure 4(b) shows the RSM calculated with the

c)

SiGe(1)

SiGe(2)

q,, nm’

355 36.0 36.5 370

q, nm’
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factors e™"J for each layer listed in the Table 1. The twisting
and broadening of the peak intensities can be simulated by
the functions Fy,(G—h) and Fp(26-26)). Figure 4(d) dis-
plays the simulated RSM on the basis of conventional DDT
for the model structure without lateral mismatches and cor-
rected for resolution effects, in this case the dislocations are
absent and e Vi=F,,(G—h)=1.

Figure 5 shows the (a) experimental and (b) simulated
reciprocal space maps for (135) Bragg reflection collected
from strained silicon structure described in Table II (sample
by courtesy of Forschungszentrum Juelich, Juelich, Ger-
many). The relative positions of the peaks on the simulated
map are well situated in comparison with the measured in-
tensities (very thin strained silicon layers are not observed
due to weak scattering power). The relaxation degrees of
both Si;_,Ge, layers have been fitted, and the values are
presented in Table II along with the evaluated concentrations
of the germanium in the layers (the nominal concentrations
are displayed in the material column). For simulated map,
Fig. 5(b), the formula (26) has been used and the broadening
of the peaks is mostly caused by the function F,(G—h). The
static Debye-Waller factor is close to unity for all the layers
e Wi=1, which is conditioned by the very similar values of
the lattice parameters for both Si and Ge.

IV. CONCLUSIONS

The present work is a further!*! extension of the matrix

method for HRXRD. We developed x-ray dynamical diffrac-
tion theory from multilayered epitaxial structures, including
partly relaxed samples. Being based on the matrix method,
the technique also permits the simulations for arbitrary ge-
ometry of the experiment, including extremely asymmetric
diffraction and grazing-incidence (exit) diffraction.

For calculation of the amplitudes of the wave field in the
layers, the widely used model for the relaxation state of the
epitaxial film is used, which is described by the relaxation
degree 0=R=1 or, equivalently, by normal and lateral lat-
tice mismatches. In the framework of this model, the exact
solution for the boundary problem comprising the continuity

36.5
q, nm’”

FIG. 5. g,q. reciprocal space map for (135) Bragg reflection from Si/SiggoGe 11/ Si/Sig79Geg,1/[Si] multilayer, described in the Table
II: (a) experiment; (b) simulation with the best-fitted relaxation degree of layers.

235315-8



X-RAY DYNAMICAL DIFFRACTION FROM PARTLY...

of the wave fields at the interfaces is found. The principal
harmonics in the layers are shown to be sufficient for the
calculation of the intensity of the diffracted beams. The am-
plitudes of these harmonics in multilayered partly relaxed
samples are expressed through the solutions of the recurrent
equations for corresponding pseudomorphic layers, and thus
the results are valid for the entire range of the relaxation
parameter R.

The theory developed has been applied for the simulation
of the high-resolution reciprocal space maps from the partly
relaxed multilayered samples taking into account the extinc-
tion of the diffracted waves, the instrumental functions of the
x-ray source and the detector. The diffuse scattering from the
dislocations presenting in the partly relaxed samples is simu-
lated using a static Debye-Waller factor, which allows the

PHYSICAL REVIEW B 80, 235315 (2009)

relative intensities of the layer peaks to be fitted. The appli-
cability of the method is demonstrated in the several experi-
mental data and their simulations by the presented theory.
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